
Project Title: Advanced Multi-Label Learning
Techniques (AMULET)

Project ID: HFRI-FM17-514

Principal Investigator: Grigorios Tsoumakas

Host Institution: Aristotle University of Thessaloniki

Project Website: https://amulet.csd.auth.gr

Deliverable D2.1 – Technical Report on
Handling Label Additions

Team AMULET
Grigorios Tsoumakas

Stamatis Karlos
Nikolaos Mylonas

1

https://amulet.csd.auth.gr


1 Introduction

In the first phase of the AMULET project we dealt with label additions in the
MeSH (Medical Subject Headings) thesaurus. To be more precise, we focused on
new descriptors that get introduced in MeSH and specifically those that could
not be retrospectively used to index existing articles. In such cases, we cannot
find ground truth data in order to train machine learning classifiers for those
descriptors, thus giving rise to a zero-shot problem. Our objective was creating
an algorithm that can properly index incoming scientific publications with those
newly introduced descriptors under the assumption that training data relevant
to them are scarce or even non-existent.

Shortage of training examples is a well-known problem in the machine learn-
ing community and as such there is a lot of research on this topic. There are
two main categories of approaches used for dealing with these kinds of problems.
The first one is weakly supervised learning (WSL), where the machine learn-
ing classifier gets trained using weakly labeled data. Weakly labeled data are
instances that are not labeled with “gold labels”, which means that we cannot
always be sure that these labels are the correct ones for that instance. There is a
plethora of methods used for obtaining weak labels for an instance, with a very
simple one used in text classification being to check if the textual representation
of the label is present inside the text of the instance. Besides WSL approaches
there are also zero-shot Learning (ZSL) ones. These methods usually train a
classifier on a set of labels known as the “seen” ones and then use that classifier
in order to predict a set of labels containing both the “seen” and a new set of
“unseen” labels.

The first step towards our goal was to research related work on the above
topics, in order to better understand the techniques used for such problems. By
doing so, we were able to better grasp the domain’s traits and get a better view
on the state-of-the-art approaches. Furthermore, we examined the MeSH the-
saurus, focusing on its yearly changes and particularly those that introduce new
descriptors to the vocabulary, as well as the relations between said descriptors.
After researching about the methods and the vocabulary we would apply them
on, we started developing our own approaches for dealing with label additions in
MeSH. In the following subsections we present two methods that were developed
by the AMULET team for that specific task [1, 2].

2 Zero-Shot Classification of Biomedical Arti-
cles with Emerging MeSH Descriptors

In order to deal with the constant evolution of MeSH data and specifically
the novel labels introduced each year, we developed an instance-based method
named ZSLbioSentMax. Instance-based means that the method requires no
training phase and is able to predict each incoming instance independently.
The main idea behind our approach is that by transforming the textual rep-
resentations of each article’s abstract and labels into embeddings, the simi-
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larity score between relevant labels and abstracts should be higher than that
between irrelevant ones. For that reason we use the well-known measure of
cosine similarity, in order to quantify the “closeness” between labels and the
sentences per instance’s abstract, assuming that each instance is expressed as
xi = {sent1, sent2, ..., sentn}, 0 ≤ i ≤ ntest where ntest denotes the number of
test instances. The final similarity matching score is the maximum one from the
similarities of each sentence. If that value is higher than a pre-defined threshold
(th) for a label-abstract pair, then the abstract is considered as relevant to that
label. What separates our method from other similar ones in the bibliography
is that we treat each abstract as a bag of sentences, calculating the similarity
between the label embeddings and each one of these entities. The final similar-
ity per instance is the maximum score among the above ones. The embeddings
for the abstracts and labels are obtained using the BioBert pre-trained model,
which is a biomedical language representation model fine-tuned using data from
the PubMed database [3]. Our decision is based on the following assumption:
if an abstract is indeed related to a query label, then we can find at least one
sentence in it that is semantically close to that label. We decided to use the
maximum similarity between the sentences and the query label to trigger the
labeling, instead of a more common measure like the average of all the similarity
scores per instance. In that scenario, the chance of miss-labeling an instance
xi increases, because the average similarity gets lowered by one or more com-
pletely unrelated sentences. We depict in figures 1 2 3 the density plots of
the similarity scores for all the 3 examined labels, highlighting the separabil-
ity of their distributions regarding two cases: Using the max similarity score
per abstract’s sentence (upper scheme) against the scenario of including all the
similarity scores per abstract (lower scheme).

Figure 1: Density plots of similarity scores in case of Biomineralization.

In order to test our proposed method, we created 3 different datasets for 3
different novel descriptors added in the MeSH hierarchy during the 2020 changes,
meaning our approach was tested into 3 different binary classification problems.
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Figure 2: Density plots of similarity scores in case of Chlorophyceae.

Figure 3: Density plots of similarity scores in case of Cytoglobin.
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Table 1: Comparison of ZSLbioSentMax and LWS

Algorithm Pr Re F1 th time
Biomineralization

Ours 0.824 0.977 0.894 0.77 168
[4] 0.946 0.814 0.875 0.81 6175

Chlorophyceae
Ours 0.683 0.882 0.77 0.77 183
[4] 0.675 0.785 0.726 0.80 6154

Cytoglobin
Ours 1 0.891 0.942 0.77 114
[4] 0.982 0.982 0.982 0.80 3866

For each one of those descriptors we found as many positive instances as possible
in the BioASQ1 2020 dataset and 3 times as many negative ones. These 3
descriptors, along with the number of positive instances found for each one, are
the following:

• Biomineralization (86 instances)

• Chlorophyceae (93 instances)

• Cytoglobin (55 instances)

For comparison we used a similar method developed in [4], which is called
Label Word Similarity (LWS). This method differs from our approach by using
n-grams instead of sentences, in particular n-grams of size 1,2 and 3. We hy-
pothesized that the much smaller n-grams were not able to completely capture
the meaning of each abstract, lowering the predictive value of the model. The
above fact seems to be true based on the results in Table 1. Furthermore, in the
original paper for LWS they used Word2Vec instead of BioBert for obtaining
the embeddings of the labels and abstracts. Towards making our experiments
as fair as possible, we decided to use BioBert embeddings for both methods and
search for the threshold that gives the highest possible F1 score. The criterion
for implementing our model selection choice based on the appropriate th value
is depicted in Equation 1, as follows:

Model Selection : th* = argmax
th

F 1(y, ŷ(th)) (1)

Examining the results, we can see that in 2 out of 3 cases our method
outperforms the n-gram based one as far as F1-score is concerned, while being
much faster in all 3 cases. The difference in time response is attributed to the
fact that partitioning a whole abstract using small n-grams is a much more time-
consuming procedure than splitting it into sentences, while the higher predictive
performance can be attributed to sentences being able to better capture the

1http://bioasq.org/
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Table 2: Comparison of Weakly Supervised Classification Approaches

Algorithm Pr Re F1 th time(sec)
1:1

Biomineralization
baseline 1.0 0.1627 0.28 – 1.338

WSL(bioBert) 0.907 0.907 0.907 0.78 1563
WSL(tfidf) 0.930 0.767 0.841 0.78 1072

Chlorophyceae
baseline 0.0 0.0 0.0 – 1.16

WSL(bioBert) 0.632 0.850 0.725 0.77 1585
WSL(tfidf) 0.670 0.957 0.788 0.77 1072

Cytoglobin
baseline 1.0 0.764 0.865 – 0.756

WSL(bioBert) 0.960 0.854 0.904 0.77 846
WSL(tfidf) 0.923 0.873 0.897 0.76 575

1:3
Biomineralization

baseline 1.0 0.174 0.297 – 2.813
WSL(bioBert) 0.938 0.884 0.910 0.78 2927

WSL(tfidf) 0.777 0.849 0.811 0.77 1998

Chlorophyceae
baseline 0.0 0.0 0.0 – 2.263

WSL(bioBert) 0.588 0.968 0.731 0.76 2969
WSL(tfidf) 0.654 0.914 0.762 0.77 2025

Cytoglobin
baseline 1.0 0.764 0.865 – 1.54

WSL(bioBert) 0.957 0.820 0.882 0.77 1547
WSL(tfidf) 0.925 0.891 0.907 0.76 1068

6



meaning of each abstract, while filtering out unnecessary information which
may lead to classification mistakes.

To boost the performance of our ZSLbioSentMax method we decided to make
use of the relations between the newly introduced descriptors in MeSH and the
older ones already present inside the vocabulary aiming to obtain some useful
training instances for the novel descriptors. These relations come in the form of
“Previous Indexing” (PI), which is a term used to describe an older descriptor
who was used to index articles that may be relevant to the new descriptor. The
PI can be related to the new one in several ways, such as with a parent-child
relation, or simply by having a meaning similar or broader to the new descriptor.
Unfortunately, the PI is not always present for every new descriptor and even
in cases where it is, articles indexed with it are not always relevant to the new
one. For that reason, we decided to use ZSLbioSentMax in order to obtain
weakly-labeled examples for the novel labels from a collected set of articles
indexed with the PI for each one of the novel labels and then use those articles
to train a typical machine learning classifier. The above procedure was dubbed
WSLbioSentMax(transform mode). The component transform mode refers
to how we transform the textual representations for each abstract before we
give them to the classifier for training. The“modes” we investigated are tf-idf
vectorization and the already mentioned BioBert embeddings, though this time
we apply the transformation on the whole abstract rather than each sentence
individually. Since this method uses weakly-labeled data during the training
step of the classifier it is considered a WSL method.

This way of obtaining weak labels for the training set regarding the novel
descriptors was tested against the much simpler method known as “Abstract
Occurrence”. As the name suggests if the novel label is present inside the
abstract of an article, then this article is weakly labeled with it. As was the
case with the previous experiments we used 3 different datasets for each one of
the novel descriptors. This time we used articles from the 2018 BioASQ dataset
in 2 different ratios (1:1 and 1:3) of articles indexed with the PI of the novel
label (possibly positive examples) and completely unrelated ones. The PI for
each one of the novel descriptors, along with the number of articles indexed with
it in our 3 datasets, are:

• Biomineralization (Minerals: 1000 instances)

• Chlorophyceae (Chlorophyta: 1000 instances)

• Cytoglobin (Globins: 500 instances)

The results for the above method can be found in Table 2, where we can see
that obtaining weakly-labeled examples using ZSLbioSentMax clearly outper-
forms the baseline method of “Abstract Occurrence” albeit being much slower.
Additionally, WSLbioSentMax(transformmode) seems to increase the results
of the ZSL method in 2 out of the 3 examined cases.

The only case where the results were lower for the WSL method was for
Cytoglobin, whose PI we only managed to find in 500 instances making the
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training set smaller than in the other 2 cases, which may have been the reason
for the poorer performance of the model. It is worth noting that the results for
the 1:1 and 1:3 ratios are almost identical. The above fact leads us to believe
that our method is able to correctly distinguish which articles indexed with the
PI are also relevant to the newly introduced descriptor. Thus creating training
data of relatively “high” quality and as such the introduction of more negative
examples does not influence the decision of the model, making this approach a
robust one.

A shortcoming of the above approaches is that they require the use of a
predefined threshold in order to correctly classify the incoming instances. To
that end, we have to investigate further on data-driven mechanisms or methods
that would help us to automatically identify the aforementioned threshold for
each one of the novel labels. One such method is the Gaussian Mixture Models
(GMMs), an unsupervised learning method that represents a predefined num-
ber of normally distributed subpopulations within a larger overall population,
During this stage, each instance is assigned to the most probable distribution,
optimizing a specified criterion. We applied GMMs on the distribution of the
maximum similarity of each label to each abstract’s sentence searching for 2
separate components. The return threshold is the median value between the
median values of each subpopulation. The produced results, which were pretty
close to the observed best values calculated by our tuning stage, are the follow-
ing:

• Biomineralization: 0.776

• Chlorophyceae: 0.766

• Cytoglobin: 0.767

3 Instance-Based Zero-Shot Learning for Semi-
Automatic MeSH Indexing

After the promising results of our first work we decided to extend our research
into developing a method that is able to facilitate the indexing of incoming arti-
cles with multiple unseen labels by ranking the novel descriptors (Lnovel) for each
instance. Assuming knowledge about the non-novel descriptors (Lknown) rele-
vant to an instance, our method ranks the novel ones based on their similarity to
the instance’s abstract and its known non-novel labels. According to a detailed
categorization of ZSL methods published in 2019 [5], 3 different learning settings
are defined based on the information that is needed during training and infer-
ence stages: Class-Transductive Instance-Inductive (CTII), Class-Transductive
Instance-Transductive (CTIT) and Class-Inductive Instance-Inductive (CIII).
The method developed in our work falls in the former category since it requires
prior knowledge about the existing novel descriptors but does not need a set of
data indexed with them. The instance based ZSL aspect, as discussed earlier, in-
dicates the fact that no training stage takes place for the novel descriptors. This
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happens due to both the absence of training data, and the need for a straight-
forward decision avoiding any transductive operations. Since our method works
independently for each instance, we can produce a label ranking for each article
right when it becomes available without any additional procedures. The ini-
tial label ranking is based on their similarity to the non-novel ones relevant to
the instance and is calculated by the following function called Label Similarity
Score:

LSSc(MT,Ltest, known) = g({similarity(MT, labelj)}kj=1) (2)

where this computation holds ∀MT ∈ Lnovel and ∀labelj ∈ Ltest,known.
Moreover, k depicts the amount of the known labels in each specific test instance
or based on the already used terminology: k = |Ltest,known|, while g(·) is a
mathematical function. After computing the initial ranking, each novel label is
given a weight based on its similarity to the instance’s abstract. Matching the
method discussed in the previous subsection, the similarity between label and
abstract is the maximum of the label’s similarities with each of the abstract’s
sentences. We call this weighting function wsent:

wsent(MT, texttest) = h({similarity(MT, sentencej)}pj=1) (3)

where h(·) plays a similar role to g(·). In order to obtain the weighted ranking
score per candidate novel label (RankSc), we multiply the scalar outputs of Eq.
2 and Eq. 3 creating the utility function for our task – as follows:

RankSc(MT ) = LSSc(m,Ltest, known) ∗wsent(MT, texttest) (4)

Finally, because several novel terms are similar in meaning, we could obtain
confusing results when examining only the semantic closeness based on an em-
bedding transformation. This issue, known as hubness, is enlarged on real-life
problems with complex and large label spaces, such as the investigated one. To
deal with this case, we exploit the occurrence of the label descriptor into the raw
format of each texttest. Since this approach neither returns a positive answer
(in case that no label is detected) nor a ranking score is applicable, since only
boolean information is generated, we could not take advantage of this simple
but still effective approach without having previously obtained a ranking map-
ping of the Lnovel set. Consequently, all the MeSH terms that were detected
into the texttest are promoted to the top positions of the exported ranking,
maintaining their original ranking based on Eq.4 through this heuristic rule.
Overall, the proposed instance-based Zero-Shot-Learning approach IBZSL can
output a ranking of any provided subset of labels’ names acting as Lnovel. Its
main assets are that we avoid the need of an observed batch of instances so as
to start its operation, as well as the shortage of any hyper-parameter, assuming
that a good, still realistic, prediction of the Lknown set is provided beforehand.

To evaluate our method, we used the BioASQ 2020 dataset. Specifically, we
found the new labels that appeared for the first time in 2020. Although we found
450 such new labels, we kept the top 100 ones with the highest frequency, and
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Table 3: Results of the proposed method against two NN baselines and inter-
mediate approaches

Ideal Oracle Imperfect Oracle
Approaches Coverage 1-error Coverage 1-error
NN-bioBERT(Manhattan) 33.043 0.815 - -
NN-bioBERT(Cosine) 26.499 0.790 - -
LSSc(max) 23.579 0.879 28.117 0.900
RankSc(max) 19.251 0.794 21.758 0.812
IBZSL(sum) 11.686 0.637 12.256 0.640
IBZSL(max) 8.961 0.620 10.057 0.624

then isolated the abstracts where they appear in (N=44,938). In total, 46,756
annotations correspond to the top 100 labels, out of the 57,582 for the full set
of labels. For comparison we used a similar instance-based Nearest Neighbor
method developed by [6]. In order highlight the effectiveness of the proposed
IBZSL and to maintain fairness, we implemented that approach by replacing
the use of an embedding space based on general source data (Wikipedia) with
this of BioBert. We name this variant NN-bioBERT, acting similarly with the
original work, employing two distinct distance metrics: Manhattan and Cosine
similarity (Cosine) into the R768 space that bioBERT architecture defines by
default. Furthermore, since we provide a ranking of the candidate novel labels,
we perform comparison based on the Coverage and the 1-error performance
metrics [7]. According to the former, we compute the position at which the
actual novel label(s) is(are) ranked per examined test instance. In case that only
one novel label exists, and it is found in the first position of the predicted ranking
(pred) we return zero, without negatively affecting the score of Coverage. When
more novel labels exist, the largest position of them into pred is added to the
total sum for the whole test set. The latter one depicts the number of times that
the highest ranked label does not belong to the actual label set of the examined
test instance. For the functions similarity, g and h, we selected Cosine, max
and max, respectively, concerning the proposed method. We also added for
comparison’s sake the choice of sum in case of h, creating one variant called
IBZSL(sum).

Finally, since our method requires prior knowledge of the relevant non-novel
labels per examined instance, we tried 2 different oracles to obtain those labels.
The first one is a perfect oracle who gets all the correct non-novel labels for
each instance, while the second one is a more realistic one who gets 70% of
them correct and adds noise for the rest of them. The results can be found in
Table 3.

The produced results show the efficacy of IBZSL in both examined scenar-
ios based on the power of the oracle, while the contribution of each one of
the adopted steps is clearly presented. To be more specific, by presenting the
achieved performance of each separate stage we follow an ablation manner of
presenting the contribution to each stage over the final results. We can observe
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that even the use of LSSc approach outperformed the rest of the instance-based
approaches, while the use of max function seems to better capture the underly-
ing similarities into the semantical embedding space. Furthermore, the obtained
performance has not been highly differentiated under the more realistic scenario,
offering thus a robust learning ability of the proposed algorithm.

To sum up, we include a scheme that describes the total learning pipeline.
It primarily depicts the regarding annotation of the known labels by human
experts or state-of-the-art approaches, including also the intermediate stages of
the proposed multi-label Zero-shot ranking over the novel labels.

Figure 4: Visual Abstract of our PRLetters submission
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