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1 Introduction

The first task of the third work package concerns local multi-label explanations.
Multi-label models are widely used both in the industry and academia, due to
the number of domains they are applicable on. Explaining the decisions of such
models however is not a straightforward task, mainly due to their complexity.
Hate speech detection is one such domain, which affects online users on a daily
basis. Explaining the decisions of models that aim to moderate hate speech
on social media, can be a valuable tool. Applying this in multi-label context
is even more challenging due to the lack of high quality data sets, to test our
techniques on.

To alleviate this issue, we developed a multi-label hate speech detection data
set called ETHOS. ETHOS retains a balance between the multiple labels, while
also covering a wide spectrum of topics for each one of the hate speech labels.
These two properties are very scarce in the literature, and as such we believe it
is a valuable tool towards hate speech detection.

Furthermore, since the focus of this work package is interpretability of text
classification tasks, a domain where transformer models are commonly em-
ployed, we studied how attention computed by transformers can be used as
interpretation for the model’s decisions. To that end, we performed an investi-
gation to discover the optimal interpretation extraction process from attention.

Finally, one last activity related to this task, was extending a recent work on
local interpretability of Random Forest models, to be applicable in multi-label
tasks. The extension retains the main properties of the original work, offering
informative rules and a variety of representations regarding the labels that the
explanation covers.

2 ETHOS: a Multi-label Hate Speech Detection
Dataset

Hate speech (HS) is a type of derogatory public speech directed at specific in-
dividuals or groups of people based on characteristics such as race, religion,
ethnic origin, national origin, gender, disability, sexual orientation, or gender
identity1. This phenomenon occurs verbally or physically (e.g., speech, text,
gestures), fostering the formation of racism and ethnocentrism. Because of the
social consequences associated with HS, many countries consider it an unlawful
act, especially when violence or hatred is promoted [1]. Although freedom of
speech and expression is an essential human right, it is in contradiction with
laws that protect individuals from HS. As a result, almost every country has re-
sponded by developing matching regulatory frameworks, while the Data Mining
and Machine Learning (ML) research community have lately conducted research
related to techniques that attempt to remedy such occurrences, providing data
sets and ML models [2].

1https://en.wikipedia.org/wiki/Hate_speech
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To overcome the key weaknesses of the existing data set collections of HS
instances, we introduce a small, yet fairly, informative dataset, ETHOS, that
does not suffer from issues such as imbalanced or biased labels (e.g., gender),
produced appropriately following a carefully designed protocol. Considering the
popular approaches of mining similar datasets for tackling with HS problem, we
assume that an appropriate pre-process of initially collected data could improve
in general their overall utilisation under ML or AI products, improving the total
fitness of data quality, blending data mining techniques related with the field of
Active Learning [3], such as query strategy and crowdsourcing platforms. The
overview of the proposed annotation protocol is visualised through a flow chart
in Figure 1. The finally obtained dataset is the outcome of a 3-stage process,
which we describe shortly in the current Section.

Figure 1: Dataset creation stages flowchart

2.1 Initial Dataset Creation and Manual Annotation

The first three procedures, mentioned as “Platform Selection & Data Collec-
tion”, “Data Prediction” and “Manual Data Annotation”, could be seen as the
initial stage (Stage 1) which is executed until a stopping criterion is satisfied
regarding the cardinality of the collected instances, based on the original avail-
able HS dataset which operates as the input. This stage works like a “stream”,
specifically for groups of comments that we have already collected, annotating
their weak labels’ predictions through a predefined ML classifier, before an ac-
tive selection and manually annotation takes place over some unlabelled (U)
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mined examples.

2.1.1 Platform Selection & Data Collection

To create this dataset (D), initially D = ∅, a data collection protocol has
been designed. We chose the platforms of Hatebusters2 and Reddit through
the Public Reddit Data Repository3 to collect our data. Hatebusters Platform
collects new data daily via the YouTube Data v3 API.

After these new data have been collected, the Hatebusters Platform performs
the classification process. The locally retained pre-trained ML model predicts
the class of each comment, exporting a ‘hate’ score. Currently, this model is
a Support Vector Machine (SVM) model with a linear kernel embedded with
the well-known vectorization technique of the term frequency-inverse document
frequency (TF-IDF). Instead of transforming the output of the SVM learner to
confidence score, we kept its inherent property to compute the distance from
the decision boundary. Through this, lower time overheads and more faithful
decisions are drawn.

After granting access to Hatebusters’ SQL database, based on the input
data, this first part was to query the Hatebusters’ database for comments al-
ready annotated by the corresponding users, without spending any monetisation
resources. These comments were deemed to be accurate, and they were the first
group of comments to be manually annotated. The second part concerns the
enrichment of the gathered comments, by querying Hatebusters’ database with
a specific frequency (e.g. daily) for a time period – in our case this was equal to
two months – with various queries. Based on the data obtained each previous
day, the applied query strategy had been updated concerning only them. For
example, when we received a sufficient amount for all categories of HS, except
for one category, the queries in the Hatebusters’ database were updated to make
comments specific to the residual category. Later on, we will show the categories
and the amount of comments we have received.

The final part of the data collection process was based on a public Red-
dit data archive, which provides batches of files regarding Reddit comments on
a monthly basis. The files of this directory were processed through a JSON
crawler for selecting comments from specific subreddits for particular time pe-
riods. The discovery of subreddits incorporating different HS contents has been
investigated4,5, we distinguished the next entities:

• Incels, this subreddit became known as a place where men blamed women
for their unintended celibacy, often promoting rape or other abuse. Those
posts had a misogynistic and sometimes racist content.

• TheRedPill, which is devoted to the rights of men, containing misogy-
nous material.

2https://hatebusters.org
3https://files.pushshift.io/reddit/comments/
4https://en.wikipedia.org/wiki/R/The_Donald
5https://en.wikipedia.org/wiki/Incel
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• The Donald, a subreddit where the participants create discussions and
memes supportive of U.S. President Donald Trump. This channel has
been described as hosting conspiracy theories and racist, misogynous, Is-
lamophobic, and antisemitic content.

• RoastMe, in this subreddit, reddit users can ask their followers to ‘roast’
(insult) them.

While some of these subreddits were suspended and shut down by Reddit at
the end of 2017 due to their context, it was possible to access comments from
these subreddits by selecting files from the archive for October 2017 and earlier.

2.1.2 Data Prediction

The next process of Stage 1 is the “Data Prediction”. For each batch of com-
ments extracted from the first part, the assignment of some useful labels to the
available unlabelled set (U current) is triggered through an ML model trained on
an expanded version (L ∪D) of the Hatebusters’ dataset (L) and the new data
annotated on Stage 3 (D). Per each iteration of the previous part, we were per-
forming a grid search among a bunch of classification methods in the currently
expanded dataset, obtaining the best algorithm through a typical 10-fold-CV
process so as to be set as the annotator of the (U current).

The selected bunch consisted of various ML models: SVMs, Random Forests
(RF), Logistic Regression (LR), as well as simple or more complex architectures
of Neural Networks (NNs). In addition to the classifier tuning, some TF-IDF
vectorization techniques – with word or char n-grams (n from 1 to 13) – were
also examined in this search.

2.1.3 Manual Data Annotation

By the end of the “Data Prediction” phase, the “Data Annotation” process
is initiated. In the sense of active learning concept, a hybrid combination of
query strategy has been employed in order to pick informative comments for
manual annotation. The mentioned query strategy combines appropriately both
concepts of Uncertainty Sampling and Maximum Relevance with predefined
ranges of accepted confidence values based on the expected labels of the classifier
we had trained [4]. More specifically, we were annotating the comments within
the [.4, .6] probability range, while we were examining few comments in the
ranges [.0, .1] ∪ [.9, 1.0] to detect any major misclassification. Eventually, only
comments with specific labels and content were added to the new dataset (D),
preserving both the balance of the labels and the diversity of the comments per
label. The latter asset stems directly from the existence of the human factor,
since the class probabilities that are produced by any ML classifier just express
its confidence independently of the underlying content. This kind of filtering is
adequately addressed here by the human factor.

At the end of this process, if the number of comments collected is not more
than a targeted threshold (T ) – in our case T = 1.000 – we update the D, and
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Stage 1 will be repeated to request new unlabelled comments. Otherwise, Stage
2 will be triggered. Despite the limited cardinality of the exported dataset, the
adopted actively sampling process eliminates defects of redundancy, maintaining
the both informativeness of each label, and reducing at the same time overfitting
phenomena. Therefore, an in-depth evaluation stage regarding several learning
models has been conducted in Section 4. The use of Query-by-Committee,
another one popular active learning strategy, might insert practical difficulties
in practice, and thus was not investigated in that analysis. The reason for this
choice is twofold: independent classifiers are needed for properly formatting such
a committee, which constitutes a hard task under the shortage of large amounts
of data, while the corresponding stage of hyperparameter tuning would induce
more computational overhead.

2.2 Data Validation via Figure-Eight Platform

The second stage will begin when T – in our case 1.000 – comments have been
collected. Moreover, Hatebusters’ dataset is discarded, since it does not further
contribute to our protocol. After a number of different experiments on the
Figure-Eight platform, we settled on the next process. Firstly, given a specific
comment, we ask the contributors to identify whether that comment contains HS
or not. In a positive scenario, we raise 3 more questions: whether the comment
incites violence, defining violence as “the use of physical force to injure, abuse,
damage, or destroy”, and whether the comment includes directed or generalized
HS. The case of targeting a single person or a small group of people is defined
as directed HS, whereas the case of targeting a class/large group of people
is described as generalised HS. Finally, we ask the contributors to pick one or
more from the following HS categories, which, according to their opinion, better
reflect(s) the content of the comments. The categories of HS concern gender,
race, national origin, disability, religion and sexual orientation.

After testing the platform with 40 questions, we executed the task for the
whole D, collecting in total 5.360 judgements. Almost every comment was
therefore annotated by five different annotators. The level of expertise of the
annotators was the 3rd, on a scale of 3 levels. “The 3rd level annotators are the
smallest group of the most experienced, most accurate, contributors” according
to the Figure-Eight System. We also computed the Fleiss’ kappa, a statistical
measure for assessing the reliability of agreement of annotators, and we present
the results in Table 1. A kappa value greater than 0.75 implies good agreement,
while kappa values greater than 0.90 indicate perfect agreement [5].

Contains
Hate Speech

Violence
Directed vs
Generalized

Gender Race
National
Origin

Disability
Sexual

Orientation
Religion

Fleiss’
Kappa

0.814 0.865 0.854 0.904 0.931 0.917 0.977 0.954 0.963

Table 1: Reliability of annotators agreement per label
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2.3 Dataset Configuration

The final stage regards dataset configuration. Taking as input the results from
the Stage 2, the dataset takes its final form. Examining the annotated data one
last time manually, we checked for any misclassification. Few errors occurred
on some of the most disambiguous examples, assuring us about the quality of
the annotators that participated. The use of representative test questions that
follow a more realistic label distribution than the uniform could be useful to the
overall process. This might be improved further by incorporating an interactive
procedure that alerts annotators to mislabelled samples and/or allows them to
provide feedback when they disagree.

Despite the inherent uncertainties introduced by the human factor, crowd-
sourcing is the sole viable technique for gathering the required information re-
garding the label space. Furthermore, given the semantic overlap of label space
encountered during HS detection, the assumption of obtaining cheap labels is
violated. Given the idiomatic expressions and highly unstructured nature of
the comments posted on social media platforms, this becomes especially clear
when examined in a multi-label fashion. To address this, additional human su-
pervision, as stated at this stage, is required, while the active sampling process,
which aims to create a balanced dataset, is clearly justified.

2.4 ETHOS Dataset Overview

Two datasets6 were the product of the above operation. “ETHOS Binary.csv”,
the first one, includes 998 comments and a label on the presence or absence of
hate speech content (‘isHate’). The second file, called “ETHOS Multi Label.csv”,
includes 433 hate speech messages along with the following 8 labels: (‘vio-
lence’, ‘directed vs generalized ’, ‘gender ’, ‘race’, ‘national origin’, ‘disability ’,
‘sexual orientation’, ‘religion’).

For every comment ci, Ni annotators voted for the labels that we set. The
label ‘isHate’ was the result of summing up the positive votes P1,i of the contrib-
utors, divided by Ni, so its values are within the range of [0, 1]. We measured the
‘violence’ label by summarising the positive votes of the contributors P2,i to the
question: “Does this comment incite violence?”, which was divided by P1,i to be
normalised to [0, 1]. Likewise, the value of the label ‘directed vs generalized ’ was
determined by summarising the annotators replied ‘directed’ P3,i to the ques-
tion, “Is this comment targeting a specific individual (directed) or a group/class
of people (generalized)?”, divided by P1,i. Finally, we accumulated the votes of
the P1,i contributors for each of the 6 hate speech categories, and dividing them
by P1,i, we obtained six independent labels.

This dataset achieves to create balanced labels. In particular, it maintains
balance between the two classes of ‘isHate’ label, almost perfect balance between
the 6 labels of hate speech categories, while it has a fair ratio between the rest
of the labels (Figure 2). In Table 2, the balance between hate speech categories

6https://github.com/intelligence-csd-auth-gr/ETHOS-Hate-Speech-Dataset.git
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Figure 2: Ratio of labels

V-D nV-D V-G nV-G Sum
Gender 14 22 13 37 86
Race 4 13 12 47 76

National Origin 5 11 18 40 74
Disability 12 15 8 18 53
Religion 11 8 24 38 81

Sexual Orientation 11 15 11 36 73
57 84 86 216 443

Table 2: Correlation of HS categories
with (not) violence (nV - V) and di-
rected/generalized (D - G) labels

(last column) and their correlation with violence and directed/generalized labels
is further portrayed.

2.5 Dataset Baseline Evaluation

In order to evaluate ETHOS, after pre-processing the data, we used a variety
of algorithms in multi-label scope to present the baseline performance in this
dataset. For the purpose of providing the unbiased performance of each algo-
rithm we performed nested-CV evaluation, using a variety of parameter setups,
for every algorithm except NNs, where we applied 10-fold-CV. In addition, we
binarise the values of each label, which are initially discrete in a range of [0,1],
to the {0,1} classes using the rule “If value ≥ 0.5 → 1 Else value → 0”.

The algorithms handling Multi Label Learning (MLL) can be either problem
transformation or adaptation techniques [6]. MLkNN [7] and MLARAM [8],
as well as Binary Relevance (BR) and Classifier Chains (CC) [9] with base
learners like Logistic Regression (LR), SVMs and Random Forests (RF), are
utilised. We used FastText (FT) embeddings for our Neural Networks (NNs)
and designed models inspired by classic MLL systems, such as BR and CC.
Specifically, NNBR is an NN containing BiLSTMs, an attention layer, two feed
forward and an output layer with 8 outputs in a BR fashion. NNCC is inspired
by the CC technique, but during its output, each label is given as input for the
next label prediction.

In the evaluation of MLL systems, a very common measure is the Hamming
loss (symmetric difference between the ground truth labels and the predicted
ones). Furthermore, subset accuracy (symmetric similarity), as well as F1-score
(micro), are contained here. We present our results in Table 3. The superior
performance of neural-based approaches compared to classical ML models is
observed. Specifically, NNBR achieves the highest score in 12 out of 13 metrics.
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F1

Micro
Subset

Accuracy
Hamming

Loss
MLkNN 53.74 26.53 0.1566

MLARAM 18.71 7.15 0.2948
BR 56.76 26.28 0.1395
CC 58.23 31.4 0.1606

NNBR 74.87 48.39 0.0993
NNCC 55.47 26.61 0.1378

Table 3: Performance of selected models on MLL HS (P: Precision, R: Recall,
AP: Average Precision)

3 Optimum Attention Analysis for Interpretabil-
ity of Transformers in Text Classification

Attention-based interpretability techniques, are much faster than other com-
monly employed methods. However, no conclusive study was performed, show-
casing the optimal interpretation extraction process from attention. As a con-
sequence, attention is often overlooked when discussing interpretability tech-
niques for transformer models, and specifically for text classification. The main
contribution of this research is an extensive attention analysis to identify the
optimal interpretation extraction procedure. Furthermore, we propose a novel
metric for evaluating feature importance based interpretability methods, while
we also propose a different strategy regarding the evaluation process of faithful-
ness based metrics, that is better suited for text-classification interpretability
tasks performed by transformer models.

3.1 Attention-based interpretations

Several works used attention information to produce interpretations in the past,
while others state that attention cannot be used for such task. However, the
process of extracting those interpretations is not always straightforward. At-
tention information exists in the form of matrices in each encoder/decoder layer
and their attention heads [10].

Studying the corresponding literature, we gathered different ways researchers
handle this attention information. The most common approach is averag-
ing [11, 12, 13] or summing [14, 15] the attention heads. Similarly, averaging [15]
and multiplying [13] are the most common operations applied on layers. Re-
garding how the final interpretation is produced, some common approaches are
selecting the row corresponding to the [CLS] token (From) [13, 12], selecting
the maximum value from each column (Max Columns) [15] or averaging the
columns of the attention matrix (Mean Columns) [16]. Two out of these ap-
proaches for extracting the interpretation from the attention matrix, From and
Mean Columns, are presented in Figure 3.

Inspired by the literature, we further present two similar novel strategies To,
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Figure 3: Interpretation extraction methods from an attention matrix

which uses the attention scores each token has towards |CLS|, and Mean Rows,
that averages the rows of the attention matrix to produce the interpretation.
The logic behind the first strategy is that since the |CLS| token is used by the
Transformer for its final decision regarding the instance, the attention scores
towards it should provide reasoning for that decision. On the other hand, Mean
Rows is examined for completeness shake. Both strategies are also visible in
Figure 3.

To the best of our knowledge, no research has been conducted, concerning
the optimal way to extract interpretation from attention matrices for text clas-
sification tasks. Towards discovering the best approach to extract accurate in-
terpretations from attention, we combine all these different strategies per layer,
head and interpretation extraction method. The available options for attention
heads found in the literature were, averaging and summing, while multiplying
and averaging are commonly used for layers. We, additionally, experiment with
summing attention layers as an available option, as well as selecting specific
attention heads or layers, following the logic that different attention heads or
layers hold different types of information. An additional strategy for selecting
the most informative heads from each layer, inspired by a recent study [17], is
also employed. Finally, we use 6 different strategies to derive the interpretation
from the attention matrix, namely, From, To, MeanRows, MeanColumns, dis-
cussed earlier as well asMaxRows andMaxColumns, which selects the maximum
value from each row/column of the attention matrix.

3.2 Ranked Faithful Truthfulness

To evaluate the different methods, we developed a novel measure based on two
others regularly used in the literature. These two, namely Faithfulness and
Truthfulness, albeit informative, do not fully represent the quality of the pro-
duced explanations. Specifically, Faithfulness considers solely the token with the
highest importance when evaluating the explanation, while Truthfulness assigns
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Figure 4

the same penalty for each token regardless of its importance score. As such, we
propose a new FI evaluation metric called Ranked FT (Faithful Truthfulness),
that not only considers each token when evaluating the quality of the explana-
tion, but also assigns a different penalty to each one based on their importance
to the explanation.

RankedFT =
1

|L|

|L|∑
l

RankedFTl (1)

The mathematical formulation for RankedFT , across all labels can be found
in Equation 1, which corresponds to the mean of the values computed for each
label (RankedFTl). To calculate RankedFTl for a specific label l, we first
iterate through the examined instances X that are subject to prediction l. For
each instance xe ∈ X,P (xe)

l > 0.5, we perform N modifications by iteratively
removing one token at a time (modify). Then, we compare the changes in the
model’s prediction, regarding label l between each modified instance and the
original one as seen in Equation 2.

compare(xe, x
′
e, we,i, l) =


P (xe)

l − P (x′
e)

l, If we,i > 0,

P (x′
e)

l − P (xe)
l, If we,i < 0,

−1× |P (xe)
l − P (x′

e)
l|, If we,i = 0

(2)
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we,i denotes the importance score of the removed token provided by the FI
technique, and the comparison is done based on its sign. We further penalize the
outcome of this comparison, according to the ranking of the token’s importance
score. This whole process is depicted in Equation 3. Higher values on this
metric indicate better performance.

RankedFTl =
1

|X|

|X|∑
e

|N |∑
i

compare(xe,modify(xe, i), we,i, l)

penalty(ze, i)
(3)

3.2.1 Token removal process in Transformers

Faithfulness-oriented interpretability metrics, including RankedFT , evaluate
the performance of the method based on how the model’s decision changes
when the most important element of the input is removed. When dealing with
textual inputs, this element refers to the most influential token to the decision.
In transformers, however, removing a word from the input sequence results in
the order of words changing, which in turn affects the context and how attention
is computed. In Figure 5, we show an example of such change in attentions, with
image (a) representing the attentions of the initial sequence, (b) the one after
the most important token is removed, and (c) when replaced with the [UNK].

(a) Original attention
scores

(b) Attention scores by
removing the token is

(c) Attention scores by replac-
ing with [UNK]

Figure 5: Example of attention with token removal and replacement with
[UNK]

Completely removing a token from the sequence (Figure 5b), affects the
attentions between the remaining ones more, in contrast to replacing it with
[UNK] (Figure 5c). This can be identified by analyzing the attentions between
the tokens of the sequence in each of these two cases compared to the original,
as seen in Figure 5. For example, the attention the token metric has towards
amazing is 0.066 in the original sequence. By removing the token is the attention
increases to 0.12, which is to be expected since the context of the sequence
changed and these tokens are next to each other now. On the other hand,
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replacing is with [UNK], only slightly increases the attention to 0.084, since
that change does not affect the position of the examined tokens.

Based on the example, simply removing the token not only nullifies its influ-
ence in that sequence but also affects the relations between the other tokens, by
shifting their context. Transformers are contextual models, which means that
the context of each examined token affects the final decision. As a result, in-
stead of removing each token from the sequence in order to measure and assess
its influence on the final decision, we replace it with [UNK] during the Ranked
FT and Faithfulness evaluation processes. This way, we nullify the influence of
the replaced token while minimally affecting the context of the sequence.

4 Local Multi Label Explanations for Random
Forests

LionForests (LF) is a local explainability technique that uses rules in order to
provide explanations for the decisions of a Random Forests (RF) model. A key
advantage of LF is that it does not need to meddle with the architecture of
the examined model, as it distils the interpretation from the knowledge already
present in RF. This in turn means that the explanations are provided without
any demerits in the model’s performance or complexity. LF can be used in bi-
nary or multi-class classification and regression problems without any significant
adjustments.

LF provides explanations for each instance. The main step of the algorithm
behind the interpretation extraction process is the estimation of the minimum
number of paths across the different estimators of RF that cover the examined
instance. This step identifies the main set of rules upon which LF builds the
interpretation for that instance through feature and path reduction and feature-
range formulation. The estimation of the minimum number of paths is not a
straightforward task, especially since it needs to comply with LF’s main prop-
erty, namely conclusiveness. This property requires the rules produced by an
explainability technique to be free of misleading or erroneous elements. Since
multi-label classification problems can be delegated to a series of different bi-
nary problems, one for each of the examined labels, we will further discuss how
LF computes the minimum number of paths for binary tasks while retaining the
conclusiveness property.

LF is applicable in single-label or multi-class classification and regression
tasks. This work aims to extend the scope of problems LF is applicable, to also
include multi-label classification. In multi-label classification, the predictions
come in matrices of size |L|, with L denoting the set of available labels. Expla-
nations in these scenarios concern either the whole predicted label set Lp ⊆ L,
subsets of it L′

p ⊆ Lp, or even each one of the labels l ∈ Lp comprising it sepa-
rately. We employ three different strategies that allow LF to export multi-label
explanations, which differ on how we calculate the quorum discussed earlier,
based on the subset of L that we want our explanation to cover.
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Figure 6: Running example

We also introduce an example, which we are going to use throughout the
different strategies. Consider an RF model with 9 = |T | estimators, predicting
5 = |L| different labels for a given input. Based on the theory presented before,
the quorum equals ⌊ 9

2 + 1⌋ = ⌊5.5⌋ = 6. For a given instance, RF predicts
the following label set [0, 1, 0, 1, 1]. From each t ∈ T tree estimator, we extract
the path and the prediction for this instance. Then, based on the strategy, we
proceed to the appropriate reduction and eventually the formulation of the final
rule interpretation. In Figure 6, the predicted label sets from each t tree are
visible.

4.1 Explaining each predicted label separately

The first step of this strategy (LF-l) is the extraction of all possible paths
from the tree predictors comprising the RF model. Then, an iterative process
for each predicted label l takes place, that first identifies the paths T which
vote for its prediction. The next step is the reduction of T to the number
denoted by the quorum, obtaining the minimum number of paths T ′. The rule
building steps remain the same as those in the original technique, namely feature
aggregation and handling of the categorical features. After formulating a rule
for each predicted label l, we use these rules as an explanation for the examined
instance.

If we look at the example in Figure 6, focusing on the second column Per
Label, we can see how LF selects and reduces the paths to the quorum. It
identifies the paths that voted for each of the three predicted labels. If the
number of paths exceeds the quorum, the LF reduction strategies are used to
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decrease them to the bare minimum (quorum). Treating each label separately
can result in smaller feature sets in the final interpretation. This is because LF
has a greater number of possible paths to reduce to the minimum.

4.2 Explaining all the predicted label set

This strategy is largely similar to the previous one, with the main difference
being that instead of an iterative process for each label (LF-a), this time a
single process is executed for the whole predicted label set. This in turn means
that LF must now identify the paths T that vote for the whole predicted label
set, greatly reducing the number of available paths to be reduced in the following
step, if possible. Furthermore, during the path reduction step, each produced
path set must cover the whole prediction, limiting the number of paths LF can
safely remove from T in order to obtain T ′. It is worth noting that, due to the
above conditions, the final rule obtained after applying the rule-building steps
is very specific to the examined instance. There is a possibility that the number
of recognized paths covering all predicted labels will be less than the quorum.
This prevents us from further decreasing them, but also prohibits us from using
them alone to form the final rule. In this scenario, regardless of their vote, we
use all the paths.

Connecting this strategy with the running example of Figure 6, we focus
on the third column, All. Only 6 paths include all the predicted labels at the
same time. LF will use the reduction strategies to decrease those pathways
to 5 (quorum). However, because there is so little room for reduction, their
effectiveness is limited, and therefore, we might not observe the desired feature
reduction.

4.3 Explaining frequent label subsets

This strategy provides explanations for subsets (LF-p) of the predicted label
set that frequently appear inside the examined data set. These subsets are
identified with the use of association rules and specifically the fpgrowth algo-
rithm. Then, an iterative process comparable to the one present in the first
strategy is performed. For each subset, the paths T that vote for all the labels
present inside it are identified and then reduced to T ′, before the rule building
steps that formulate the final rule for this subset are implemented. The final
explanation for the frequent subsets is an aggregation of the rules built by the
aforementioned process.

In case of larger label sets, as well as a large set of predicted labels, the
number of activated subsets can be very high. Therefore, the end-user is given
an option to limit the number of subsets. Hence, if the activated subsets are X
and the user asks for N < X, the first N subsets and their explanation will be
provided, ordered based on the support of the subset across the label sets of the
training data set.

In the example (Figure 6), the last column presents the explanation of one
identified subset [0, 1, 0, 1, 0] ⊂ [0, 1, 0, 1, 1], the paths which cover this set, and
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the removed path.

4.4 Experiments

We carried out a set of experiments to compare the performance of our strategies
to state-of-the-art techniques frequently used in the literature. We performed
three distinct sets of experiments to provide a fair comparison. The first com-
pares our various strategies to each other in order to gain insight into their
effectiveness with multi-label data sets. The second focuses on techniques that
explain the entire predicted label set, pitting our second strategy against similar
methods described in the literature. The third and final set compares our first
strategy to two different state-of-the-art competitors typically used in the same
task, providing explanations for each label separately. To further the reliability
of our results, we performed a 10-fold cross validation.

The experimental procedure conducted for this work, showed that the multi
label extension retains LF’s main property conclusiveness, while also providing
informative rules. Furthermore, the time response of the method was found to
be close or faster, in some cases, to other techniques in the literature that do
not comply with the conclusiveness property.
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