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Abstract—MeSH (Medical Subject Headings) is a hierarchi-
cally structured thesaurus used for indexing biomedical informa-
tion. This vocabulary contains most of the biomedical knowledge
available to date. To keep up with the continuous evolution and
expanding of our understanding on the medical field, yearly
revisions take place in MeSH. These revisions introduce new
descriptors in the thesaurus, in addition to changes in already
existing ones, either directly or indirectly. This constant evolution
of the thesaurus causes many older descriptors to exhibit some
form of drift in their meaning, which in turn affects the
performance of Machine Learning models trained on an older
version of the thesaurus when used to predict data obtained from
more recent versions. In this paper, we study the phenomenon
of concept drift in MeSH, through evaluating the performance
of a state-of-the-art text classification algorithm in articles from
different years. We also investigate how changes in descriptors
indirectly affect different ones that are related to them by
studying the shifts in their co-occurrence, using this shift as a
measure of concept drift.

Index Terms—Concept Drift, Multi-Label, Medical Subject
Headings, Outlier Detection, Label Co-occurrence

I. INTRODUCTION

New methods for indexing biomedical articles using Medi-
cal Subject Headings (MeSH) descriptors are constantly being
introduced, in large thanks to the BioASQ challenge [1].
However, the volatile nature of MeSH, with its constant
revisions, makes indexing models trained on previous versions
of the vocabulary less effective on newer ones. The cause
of this accuracy decrease is two-fold, with the most obvious
one being the changes in the vocabulary, and specifically the
introduction of new descriptors [2], [3], which the model has
never seen before. The second, more inconspicuous reason is
the drift in meaning of older descriptors, which is introduced
during MeSH revisions or due to the passing of time.

The latter is addressed by techniques from the concept drift
domain, which detect and adapt to drift events [4]. Concept
drift finds application in a variety of domains, including hate
speech detection [5], where temporal changes in vocabulary
occur, hospital discharge records classification [6], in which
changes occur monthly, network intrusion detection [7], due
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to changes in network characteristics, and energy load fore-
casting [8], due to climate or equipment changes.

This work explores the concept drift phenomenon in models
indexing biomedical articles with MeSH from two different
perspectives. The first one is an investigation of the per-
formance of a state-of-the-art text classification algorithm
trained on MeSH articles of a particular past year and tested
on subsequent ones. We also study how the inherent multi-
label nature of the thesaurus and the relationships between
MeSH descriptors may indirectly cause their meaning to drift,
affecting their performance. Secondly, we study the shifts
in co-occurrence between descriptors and use them as an
indicator of a possible drift.

The majority of drift detection methods are used on data sets
with artificially created drift. In contrast, we contribute real-
world data sets and use them for our analysis. Particularly, we
modify the BioASQ1 challenge data sets for the MeSH ver-
sions 2013-2019, to only include articles from the respective
year, covered by a common set of descriptors. The modified
data sets and the code for our work is available at our GitHub2.

II. RELATED WORK

Concept drift refers to the phenomenon, where the rela-
tionship between input and output values of the examined
data changes over time. This phenomenon has been given
different names, such as concept shift [9] or data set shift [10].
Concept drift is generally categorized in six types, namely
sudden, incremental, gradual, recurring, blip and noise drifts
[11], which differ in the relation between the input and target
data of the drifting concept. Three approaches for dealing with
concept drift are identified: weight-based, window-based, and
ensemble-based. The latter two are the most popular ones,
while drift detection is usually performed by observing the
error of the model on fresh instances.

The most common concept drift approach is the Drift
Detection Method (DDM) [12]. DDM monitors the error rate
pt of a learning model, as well as its standard deviation st
during a specific time step t, constantly updating these values
with each step. When the sum of these values passes a specific
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TABLE I
DATA SET SIZES FOR EACH EXAMINED MESH YEAR WHEN INCLUDING ALL DESCRIPTORS, THE TOP 300 MOST FREQUENT EACH YEAR, THE 198 MOST

FREQUENT ACROSS ALL EXAMINED YEARS

Year 2013 2014 2015 2016 2017 2018 2019
# Desc. 24,933 24,620 23,662 23,319 25,094 25,361 25,471

# Articles
All Desc. 541,024 368,527 243,035 129,998 224,424 224,608 237,079
Top 300 317,446 241,628 147,611 119,896 206,901 205,897 215,195

Final 198 304,116 231,231 141,980 113,155 196,326 191,580 197,180

threshold, a warning state is signaled. If they pass a second
threshold, then concept drift is detected, and the learning
model is retrained.

There has been a lot of research dealing with single label
concept drift, particularly in data streams. One such work uses
k-means to detect and address possible concept drifts [13],
by creating clusters for the instances belonging to the normal
concept and derive a global boundary, which is used to identify
instances belonging to unknown ones. Another work proposes
the use of ensembles with dynamic integration of classifiers
to handle local concept drift in the domain-specific problem
of antibiotic resistance in nosocomial infections [14]. Local
concept drift refers to the phenomenon of changes occurring
only in specific parts of the instance space. A performance-
based concept drift detection method in evolving data streams,
called Accurate Concept Drift Detection Method, was also
introduced [15], using Hoeffding’s Inequality to observe the
changes in the error rate of the learner. A concept drift
detection method based on contrastive auto-encoders, named
CADE, detects underlying concept drift and explains how the
drift occurred [16]. This is accomplished by identifying a
feature space’s subset that differentiates the drifting examples
from the normal ones present in the training data set.

Concerning multi-label concept drift, a study introduces a
sliding window-based approach for drift detection in stream
classification, making use of two different windows for each
label, for positive and negative examples, respectively [17].
One similar approach uses two windows to simulate short-term
and long-term memory (STM and LTM) [18]. STM stores the
m most recent instances, where m is the window size, while
LTM stores older instances. STM, LTM, and the combined
union of the two, along with a multi-label kNN classifier,
make decisions for each label independently. An ensemble-
based method employs a weighted ensemble of classifiers,
each trained in a different chunk of the examined data stream,
to address concept drift [19]. The weight of each classifier is
adjusted based on its performance in the current data.

Analysing the temporal shift in MeSH data sets, three
different types of data distribution changes can be identified
[20]: a) the interest of researchers changes with the passing of
time, b) the National Library of Medicine of USA changes the
thesaurus each year, and c) the annotation rules change each
year, possibly resulting in the same article being indexed with
different descriptors during different years. To address this,
a method called Time-aware Concept Embedding Learning
(TaCEL) is employed, offering time-aware embeddings for any
data set that follows the MeSH annotation rules.

Concept drift has been explored in several domains, includ-
ing autonomous vehicle control systems and toxicology. In the
former, a recent study proposed a framework that employs an
online sliding window-based drift detection algorithm utilizing
a distance metric, to effectively capture traffic pattern changes
and prevent unnecessary model updates in time-varying traffic
environments [21]. In the latter, a drift detection algorithm on
graphs generated by a chemical compound described in multi-
ple toxicology datasets to detect the impact of the compound
on biochemical pathways is introduced [22].

III. DATA SET CREATION PROCESS

At the beginning of each year, a new BioASQ data set
is introduced containing articles from MEDLINE, annotated
with MeSH descriptors. The articles in these data sets are
the ones introduced in MEDLINE up to that year and are
indexed using the MeSH version of that year. For example,
the BioASQ data set of year 2015 contains articles with dates
up to 2015 and follows the indexing policy of MeSH 2015.
The focus of this work is to analyze the concept drift of
MeSH throughout the years. Therefore, the data set for each
year should contain articles introduced during that year. To
do so, we mined each BioASQ data set, looking only for the
articles that specifically mention the year we are interested in.
However, as each BioASQ data set is introduced at the start of
the corresponding year of the challenge, the number of articles
that refer to that year is very limited, in some cases less than
1000. Therefore, we use the BioASQ data set of the version
that corresponds to the year right after the one we want to
create the data set for. This way, the number of articles that
refer to that year is much higher.

Following this process, we used the BioASQ data sets
corresponding to years 2014-2020 to create the ones we used
for our experiments that refer to 2013-2019. The number of
descriptors for each year in these data sets surpasses 20,000.
For computational reasons, we decided to focus on a smaller
subset of them. We first removed the top 10 most frequent
descriptors of each year, such as Humans, Male, and Female,
as these descriptors typically have a very general meaning and
are not particularly interesting. Then, we kept the 300 most
frequent remaining descriptors of each year. To arrive at a
common set of descriptors across the data sets of the 7 years
of our study, we took the intersection of their descriptor sets,
leaving us with 198 descriptors. The size of each year’s data set
can be found in Table I, where we show the number of articles
available each year along with the number of descriptors found



among them. The number of articles corresponding to the top
300 and final 198 descriptors are also presented.

Interestingly, we observe that the number of articles shows
significant differences from year to year. A possible cause for
this is that MeSH indexers may fall behind schedule, which
can affect the number of articles for a particular year. We
can notice such an occurrence for 2016, where the number
of articles corresponding to it in the BioASQ 2017 data set
is rather small. Furthermore, by mining the 2016 articles
from BioASQ 2018, we can see that this number increases
to 496,445, indicating a delay in indexing during these years.

IV. CONCEPT DRIFT ANALYSIS IN MESH

With MeSH constantly evolving, new descriptors as well
as changes to already existing ones are introduced. These
changes, along with the passing of time, result in the meaning
of certain descriptors drifting. This drift is easy to pinpoint
when it is the consequence of a direct change to the descriptor,
i.e. changes in its indexing policy. However, it can be hard
when the reason is not as apparent, for example, changes in the
context in which it is used. Since MeSH is inherently multi-
label, with the terms present inside the vocabulary being part
of a hierarchical structure and as such related to each other,
shifts in one descriptor’s meaning may affect the other ones as
well. In this section, we will study the phenomenon of concept
drift in MeSH from two different perspectives to determine if
it occurs, as well as the reasons behind its occurrence.

A. Performance-based Semantic Shift Detection

For this analysis, we decided to evaluate the performance
of a state-of-the-art text classifier on data annotated using
different versions of the thesaurus. BERT [23] was selected
for this procedure, which has competitive results on text
classification tasks. We fine-tuned BERT on the task of text
classification for 10 epochs and a batch size of 16, with
data corresponding to the first available MeSH year in the
BioASQ challenges, namely 2013. The classifier was then
used to predict the data for the rest of the years. This way
we can evaluate the performance of the model each year
and catch drifts corresponding to changes in meaning. To
do so, we compute the quantitative differences in F1-score
between consecutive years for each descriptor and examine
these differences to find the descriptors that act as outliers.
These descriptors are the ones we consider as having drift in
meaning for that year pair. It is worth noting that we only keep
the differences for descriptors that the model has an F1-score
of at least 0.1. This is done to avoid large fluctuations in the
quantitative difference due to the very small values of F1.

To better understand when these changes in performance be-
tween the examined years signify a possible drift, we calculate
the percentage change in performance for each descriptor for a
year pair ((Flatter

1 −Fformer
1 )/Fformer

1 ). Then, averaging these
changes across all descriptors, we show the mean change of
F1-scores between each year pair, 2014-2015: -0.39%, 2015-
2016: 0.53%, 2016-2017: -0.93%, 2017-2018: 1.92%, 2018-
2019: 1.34%. These values are signed numbers, with a positive

sign denoting that the mean F1 has increased between these
years, while a negative one indicates a decrease. The mean
quantitative difference between F1 scores for each year pair
is rather small, meaning that the performance for the majority
of descriptors remains stable. Consequently, descriptors who
exhibit much larger fluctuations during these year pairs can
be considered as outliers and as a result candidates for having
drift in their meaning. We can also see that for some year
pairs, this mean difference is positive, meaning that there are
descriptors who exhibit an increase in their performance.

1) Concept Drift identification based on outlier detection:
In this section, we present the top 10 descriptors found as
having a possible drift in their meaning for each year pair.
The identification of these descriptors was done using Isolation
Forest (IF) [24], on the computed F1 differences for each year
pair, keeping the 10 most drifting ones according to IF. Based
on this procedure, Table II presents the descriptors found as
most drifting (outliers) based on IF between these year pairs
along with the change in F1.

We can see from Table II that the most drifting descrip-
tors are different for each year pair, with a few of them
being present in multiple pairs. These abnormal changes in
performance for those descriptors can be a sign of drift in
their meaning, but can also be caused by other changes, for
example, the frequency of that descriptor in the examined
data set suddenly increasing or decreasing. Additionally, since
the examined data are multi-label, changes in the descriptors
relations with the other labels, can also affect the model’s
performance on that descriptor. Finally, yearly MeSH revisions
that do not necessarily change the descriptors’ meaning can
also be the cause of these changes in performance, for example
changes in their indexing policy.

What stands out the most is the 129.12% increase in perfor-
mance of the model on the Computational Biology descriptor
between years 2018 and 2019. This descriptor shows a 17.07%
decrease in performance for years 2015-2016 and a 21.32%
decrease for 2017-2018, while showing a smaller increase of
18.75% for 2016-2017. This volatile behavior is a sign of the
descriptor’s usage changing from year to year.

This becomes more apparent if we check the other descrip-
tors appearing together for each year pair. During 2016, the de-
scriptor Models, Biological started appearing more frequently
alongside Computational Biology. Specifically, it emerges as
its 5th most frequent descriptor, while in previous years it
wasn’t even in its top 10. This behavior changes again in
2017, where the most common descriptors used with it are
mostly the same as in 2013, which was the year used to train
the model, explaining the increase in performance. A similar
pattern is observed during 2018, where MicroRNAs appears
as its 5th most frequent descriptor, while not being used as
frequently in previous years. Finally, in 2019, where the top 3
most frequent co-occurrent descriptors are the same as those
in 2013, the performance of the model increases.

2) MeSH Descriptor relations and concept drift: Usually,
concept drift appears as a consequence of changes happening
directly on the examined label. In MeSH, these changes can be



TABLE II
TOP 10 MOST DRIFTING DESCRIPTORS PER YEAR PAIR BASED ON

QUANTITATIVE DIFFERENCE

Year Descriptor F1-diff New
2014- Survival Rate 11.42% 1
2015 Mice, Nude 11.74% 2

Polymerase Chain Reaction 13.06% 2
Chromatography, High Pressure Liquid 14.84% 2

Species Specificity -28.69% 1
Recombinant Proteins -21.68% 0

Sex Factors -15.74% 1
Real-Time Polymerase Chain Reaction -14.43% 0
Image Processing, Computer-Assisted -14.32% 1

Rats -10.49% 2
2015- RNA, Small Interfering 17.08% 1
2016 Recombinant Proteins 21.27% 3

Image Processing, Computer-Assisted 23.13% 1
Real-Time Polymerase Chain Reaction 30.84% 2

Base Sequence 49.24% 3
DNA, Bacterial -18.46% 0

HeLa Cells -18.08% 2
Computational Biology -17.07% 4
RNA, Ribosomal, 16S -16.83% 1

Software -13.14% 1
2016- NF-kappa B 11.32% 2
2017 RNA, Ribosomal, 16S 14.18% 1

Transcription Factors 14.93% 2
Computational Biology 18.75% 3

DNA, Bacterial 28.55% 0
Base Sequence -40.86% 0

RNA, Small Interfering -24.00% 0
Image Processing, Computer-Assisted -16.85% 1

Mass Spectrometry -16.79% 2
Models, Biological -15.55% 3

2017- Phenotype 16.47% 4
2018 DNA 21.00% 1

Polymerase Chain Reaction 22.95% 5
Enzyme-Linked Immunosorbent Assay 24.46% 5

Databases, Factual 28.58% 3
Real-Time Polymerase Chain Reaction 37.76% 3

Computational Biology -21.32% 3
Models, Theoretical -19.81% 0

Proportional Hazards Models -16.45% 2
Disease Progression -14.58% 1

2018- Databases, Factual 23.48% 2
2019 Body Weight 31.12% 2

Dose-Response Relationship, Drug 35.64% 2
Gene Expression Regulation 39.72% 0

Computational Biology 129.12% 1
Disease-Free Survival -34.4% 2

Mice, Nude -26.78% 1
Kaplan-Meier Estimate -25.91% 2

Species Specificity -21.04% 4
Protein Conformation -16.20% 1

a result of the yearly revisions of the vocabulary, modifications
of the indexing policy, or simply the meaning of the descriptor
shifting to something else over the years. Examining descriptor
Rats in Table II, we notice a decrease in F1 between 2014
and 2015. This decline is a result of the indexing policy for
that specific descriptor changing during 2015. In particular,
the descriptor Rats, which has a very general meaning, was
decided as of 2015 to no longer be used on articles where one
of its children terms is selected by the indexer3.

Even though descriptors may drift in meaning due to
direct changes, in a hierarchically structured thesaurus such

3https://tinyurl.com/8kez6yed

as MeSH, concept drift can be caused indirectly as well,
through changes in related concepts. By studying the changes
in the vocabulary in conjunction to the descriptors with the
biggest shift in their performance, we found that a descriptor
can exhibit a drift in its concept indirectly, due to changes
in its relations with other descriptors. MeSH descriptors are
closely related to each other. Hence, changes in one descriptor
may indirectly affect others that are correlated with it. These
changes may cause that descriptor to be indexed differently,
causing an indirect concept drift.

An example of such a scenario concerns descriptor Base
Sequence, that shows a decrease in performance of 40.86%
in 2016-2017. During the MeSH revisions of the latter year,
descriptor Molecular Sequence Data, which is parent-child
related to our examined one, had its indexing policy changed4.
Between 1988-2016 this term was indexed for articles that
contained: i) accession numbers for sequences deposited in
a molecular sequence databank, such as Genbank, ii) base
sequences of 50 or more bases, iii) amino acid sequences of 15
or more amino acids, iv) carbohydrate sequences of 3 or more
carbohydrate units. During the 2017 revisions, this indexing
policy changed so that the descriptor in question will only be
indexed for general articles about sequence data.

B. Co-Occurrence Based Semantic Shift Detection

MeSH indexing is a multi-label text classification task. As
such, another technique to determine if a descriptor exhibits
concept drift is to examine the other descriptors commonly
indexed with it. Changes in co-occurrence may indicate that
the descriptor’s meaning is drifting. The main motivation
behind this analysis is that in a multi-label learning task,
drift in the meaning of a descriptor is expected to affect the
descriptors it frequently appears alongside with. To capture the
changes between the most popular descriptors used in tandem
each year, we chose to conduct an analysis of the top 10 most
common descriptors used in conjunction to our investigated
ones. For each one of the 198 descriptors, we obtain 7 co-
occurrence sets of 10 descriptors (one per year from 2014 to
2019) that denote the ones it was most commonly used with
in that year. The difference between two such consecutive sets
indicates the different descriptors between these years, and can
be used as a measure of change in that descriptor’s meaning.

In Figure 1, the number of different co-occurrent descriptors
for each year pair, along with the percentage of the total
descriptors that exhibit these differences, are presented. The
x-axis of the plot denotes the year pair, with each number rep-
resenting the new descriptors appearing in the co-occurrence
set of the former year when compared to the latter one. Finally,
the y-axis indicates the percentage of descriptors that showcase
the difference.

In Table III, we show the descriptors who have the most
differences in their co-occurrence sets for each year pair. Based
on Figure 1, for each year pair the vast majority of descriptors
(around 90%) had between 0, 1, and 2 different descriptors in

4https://tinyurl.com/3m5h2w5d
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Fig. 1. Co-occurrence difference plot for each year-pair.

each year pair, while the rest had either 3, 4, or 5. Therefore,
the descriptors shown in the table belong to the second group,
with most of them having 3 new co-occurrent descriptors
between their respective year pairs. This means that in the
latter year of the year pair, the descriptor started to appear
more frequently with 3, 4, or 5 new descriptors that it was
less commonly used with in the past, signifying a possible
drift in meaning for that descriptor.

The descriptor Dogs appears in almost every year pair, being
frequently used alongside different descriptors each successive
year. This is most likely due to the descriptor having a very
broad meaning and hence being used in every article related
to dogs. Similarly, descriptor Species Specificity is used to
denote the differences between organisms of different species,
essentially being used in articles that reference characteristics
that separate one species from others.

C. Performance and Co-occurrence based comparisons

Going one step further, we combine the results of the two
methods. Thus, the decisions made by the co-occurrence based
method for the performance-based descriptors can be found in
Table II while those made by the latter for the descriptors of
the former can be found in Table III. We can see from the
two tables that there are common descriptors between these
two methods. Specifically, there are 10 common descriptors,
which indicates a link between descriptor co-occurrence and
model performance in the vocabulary of MeSH. A descriptor,
being present in both tables during the same year-pair, can
signify that the changes in its co-occurrences are the cause of
the abnormal fluctuations on the model’s performance for that
descriptor in that year-pair.

However, that may not always be the case, since there
are descriptors with many co-occurrence changes that do not
exhibit any significant difference in performance. The latter
can be observed for descriptors with broad meanings that
are used in various topics, and as such the descriptors they
frequently appear with can change yearly without significantly
impacting the performance of the model. These descriptors

TABLE III
MOST DRIFTING DESCRIPTORS PER YEAR PAIR BASED ON

CO-OCCURRENCE

Year Descriptor New F1-diff
2014- Fibroblasts 3 -0.32%
2015 Liver Neoplasms 3 2.75%

Water Pollutants, Chemical 3 -2.91%
Calcium 4 7.55%

Dogs 4 -1.71%
Transcriptome 4 3.32%

2015- Antioxidants 3 4.87%
2016 Base Sequence 3 49.24%

Calcium 3 0.40%
Fibroblasts 3 2.37%

Oxidative Stress 3 2.33%
Recombinant Proteins 3 21.27%

Computational Biology 4 -17.07%
Dogs 4 5.08%

Polymerase Chain Reaction 4 -8.46%
Transcriptome 4 10.05%

2016- Cognition 3 -2.47%
2017 Computational Biology 3 18.75%

Models, Biological 3 -15.55%
Software 3 9.01%

Swine 3 3.81%
Tandem Mass Spectrometry 3 0.65%

Binding Sites 4 -4.50%
Dogs 4 3.75%

Species Specificity 4 -1.46%
2017- Cell Differentiation 3 2.97%
2018 Cell Movement 3 8.57%

Comorbidity 3 13.03%
Fibroblasts 3 1.76%

Hydrogen-Ion Concentration 3 2.04%
Models, Biological 3 6.71%

Computational Biology 3 -21.32%
Databases, Factual 3 28.58%

Real-Time Polymerase Chain Reaction 3 37.76%
Base Sequence 4 7.79%

Diet 4 -0.08%
Immunohistochemistry 4 7.05%

Phenotype 4 16.47%
Enzyme-Linked Immunosorbent Assay 5 24.46%

Polymerase Chain Reaction 5 22.95%
Species Specificity 5 -9.25%

2018- Cognition 3 -11.28%
2019 Logistic Models 3 -3.95%

Mice, Knockout 3 -1.25%
Neoplasm Staging 3 5.15%

Odds Ratio 3 < 0.1%
Real-Time Polymerase Chain Reaction 3 12.57%

Tumor Necrosis Factor-alpha 3 7.15%
Dogs 4 0.56%

Species Specificity 4 -21.04%

appear as most drifting by the co-occurrence based method
during multiple year-pairs, as discussed in Section IV-B.

In addition, the same phenomenon may be caused due to
these shifts in co-occurrences, resulting in the most common
descriptors used alongside each other being closer to the train
set used during the training of the model. Such an example
is for descriptor Calcium who has 4 different co-occurrent
descriptors between 2014-2015 while having only 2 different
ones between 2013-2015, meaning that it was used in a context
more similar to the train set during 2015.



V. CONCLUSIONS

In this work, we studied the phenomenon of concept drift
in MeSH from two different viewpoints: i) the performance
of a state-of-the-art model for text classification on each de-
scriptor during different years, ii) shifts in the co-occurrences
of descriptors from year to year. Concept drift in MeSH
can be a direct result of the yearly changes taking part in
the vocabulary, or a product of the meaning of descriptors
changing through time.

Through our analysis, we found that due to the com-
plex hierarchical structure of the thesaurus, changes to one
descriptor may also indirectly influence other related ones,
causing models trained on earlier iterations of the thesaurus
to miss-classify these descriptors more frequently. Moreover,
co-occurrence shifts between descriptors seem to be linked to
model performance, but this is not always the case. Descriptors
whose performance was lowered between two consecutive
years, which also exhibit changes in their co-occurrent de-
scriptors in the same years, are the most prone to have drift
in their meaning. This highlights the importance of regularly
updating the models used to predict descriptors from the
MeSH thesaurus, to accurately reflect the evolution of our
biomedical knowledge

A few limitations of this work include that several
newly emerging biomedical concepts might not be yet well-
represented in MeSH, and thus cannot be captured by our anal-
ysis. Furthermore, our analysis primarily relied on quantitative
measures, and further qualitative analysis could provide deeper
insights into the reasons behind concept drift. In the future,
we aim to perform our analysis using multi-label models or
strategies that consider label dependencies. This way, we can
get a better insight on how the shifts in co-occurrences affect
the performance, since the aforementioned models are more
sensitive to these kinds of changes. Additionally, collaboration
with medical experts would allow us to identify biomedical
topics that are more prone to concept drift based on our find-
ings. Finally, future studies should consider examining concept
drift over longer time frames to gain a more comprehensive
understanding.

REFERENCES

[1] A. Nentidis, G. Katsimpras, E. Vandorou, A. Krithara, L. Gascó,
M. Krallinger, and G. Paliouras, “Overview of bioasq 2021: The
ninth bioasq challenge on large-scale biomedical semantic indexing
and question answering,” CoRR, vol. abs/2106.14885, 2021. [Online].
Available: https://arxiv.org/abs/2106.14885

[2] N. Mylonas, S. Karlos, and G. Tsoumakas, “A multi-instance multi-
label weakly supervised approach for dealing with emerging mesh
descriptors,” in Artificial Intelligence in Medicine, A. Tucker, P. Hen-
riques Abreu, J. Cardoso, P. Pereira Rodrigues, and D. Riaño, Eds.
Cham: Springer International Publishing, 2021, pp. 397–407.

[3] A. Nentidis, A. Krithara, G. Tsoumakas, and G. Paliouras, “What is
all this new mesh about? exploring the semantic provenance of new
descriptors in the mesh thesaurus,” CoRR, vol. abs/2101.08293, 2021.
[Online]. Available: https://arxiv.org/abs/2101.08293

[4] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2019.

[5] L. Justen, K. Müller, M. Niemann, and J. Becker, “No time like the
present: Effects of language change on automated comment moderation,”
in 2022 IEEE 24th International Conference on Business Informatics
(CBI), 2022.

[6] G. Stiglic and P. Kokol, “Interpretability of sudden concept drift in med-
ical informatics domain,” in 2011 IEEE 11th International Conference
on Data Mining Workshops, 2011, pp. 609–613.

[7] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice, and
L. Cavallaro, “Insomnia: Towards concept-drift robustness in network
intrusion detection,” in Proceedings of the 14th ACM Workshop on
Artificial Intelligence and Security, ser. AISec ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 111–122.

[8] R. K. Jagait, M. N. Fekri, K. Grolinger, and S. Mir, “Load forecasting
under concept drift: Online ensemble learning with recurrent neural
network and arima,” IEEE Access, vol. 9, pp. 98 992–99 008, 2021.

[9] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine Learning, vol. 23, no. 1, pp. 69–101,
Apr 1996.

[10] S. Amos, “When training and test sets are different: Characterizing
learning transfer,” in Dataset Shift in Machine Learning. The MIT
Press, Dec. 2008, pp. 2–28.

[11] K. Wadewale and S. Desai, “Survey on method of drift detection and
classification for time varying data set,” 2015.

[12] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence – SBIA 2004,
A. L. C. Bazzan and S. Labidi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 286–295.

[13] E. Spinosa and J. Gama, “Olindda: A cluster-based approach for
detecting novelty and concept drift in data streams,” pp. 448–452, 01
2007.

[14] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Han-
dling local concept drift with dynamic integration of classifiers: Do-
main of antibiotic resistance in nosocomial infections,” in 19th IEEE
Symposium on Computer-Based Medical Systems (CBMS’06), 2006, pp.
679–684.

[15] M. M. W. Yan, “Accurate detecting concept drift in evolving data
streams,” ICT Express, vol. 6, no. 4, pp. 332–338, 2020.

[16] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for
security applications,” in 30th USENIX Security Symposium. USENIX
Association, Aug. 2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/yang-limin

[17] E. Spyromitros-Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vla-
havas, “Dealing with concept drift and class imbalance in multi-label
stream classification,” 01 2011, pp. 1583–1588.

[18] M. Roseberry and A. Cano, “Multi-label knn classifier with self
adjusting memory for drifting data streams,” in Proceedings of
the Second International Workshop on Learning with Imbalanced
Domains: Theory and Applications, ser. Proceedings of Machine
Learning Research, L. Torgo, S. Matwin, N. Japkowicz, B. Krawczyk,
N. Moniz, and P. Branco, Eds., vol. 94. ECML-PKDD, Dublin,
Ireland: PMLR, 10 Sep 2018, pp. 23–37. [Online]. Available:
http://proceedings.mlr.press/v94/roseberry18a.html

[19] Y. Sun, H. Shao, and S. Wang, “Efficient ensemble classification for
multi-label data streams with concept drift,” Information, vol. 10, no. 5,
2019.

[20] Q. Jin, H. Ding, L. Li, H. Huang, L. Wang, and J. Yan, “Tackling mesh
indexing dataset shift with time-aware concept embedding learning,” in
Database Systems for Advanced Applications, Y. Nah, B. Cui, S.-W.
Lee, J. X. Yu, Y.-S. Moon, and S. E. Whang, Eds. Cham: Springer
International Publishing, 2020, pp. 474–488.

[21] S. Lee and S. H. Park, “Concept drift modeling for robust autonomous
vehicle control systems in time-varying traffic environments,”
Expert Systems with Applications, vol. 190, p. 116206, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417421015207

[22] V. Bharti, S. S. Nair, A. Jain, K. Kumar Shukla, and B. Biswas, “Concept
drift detection in toxicology datasets using discriminative subgraph-
based drift detector,” Briefings in Bioinformatics, vol. 24, no. 1, 12
2022, bbac506. [Online]. Available: https://doi.org/10.1093/bib/bbac506

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” 2019.

[24] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 8th IEEE
International Conference on Data Mining, 2008, pp. 413–422.

https://arxiv.org/abs/2106.14885
https://arxiv.org/abs/2101.08293
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
http://proceedings.mlr.press/v94/roseberry18a.html
https://www.sciencedirect.com/science/article/pii/S0957417421015207
https://www.sciencedirect.com/science/article/pii/S0957417421015207
https://doi.org/10.1093/bib/bbac506

	Introduction
	Related Work
	Data set creation process
	Concept Drift Analysis in MeSH
	Performance-based Semantic Shift Detection
	Concept Drift identification based on outlier detection
	MeSH Descriptor relations and concept drift

	Co-Occurrence Based Semantic Shift Detection
	Performance and Co-occurrence based comparisons

	Conclusions
	References

